Telegram Group & Telegram Channel
Команда дня: pipe

Сегодня делимся полезной фишкой из библиотеки pandas — метод .pipe() для создания чистых и читаемых цепочек обработки данных.

import pandas as pd

# Пример: очистка и преобразование данных в одну цепочку
def clean_data(df):
return df.dropna().reset_index(drop=True)

def add_age_group(df):
df['age_group'] = pd.cut(df['age'], bins=[0, 18, 35, 60, 100], labels=['Kid', 'Young', 'Adult', 'Senior'])
return df

# Используем pipe для последовательной обработки
df = (pd.read_csv('data.csv')
.pipe(clean_data)
.pipe(add_age_group))


Зачем это нужно:
🎌 .pipe() позволяет организовать преобразования данных в логическую цепочку, улучшая читаемость кода
🎌 Удобно для сложных ETL-процессов (Extract, Transform, Load)
🎌 Легко добавлять новые шаги обработки

Пример в деле:
def normalize_column(df, col):
df[col] = (df[col] - df[col].mean()) / df[col].std()
return df

df = (pd.DataFrame({'value': [10, 20, 30, 40]})
.pipe(normalize_column, col='value'))


Библиотека дата-сайентиста #буст
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6423
Create:
Last Update:

Команда дня: pipe

Сегодня делимся полезной фишкой из библиотеки pandas — метод .pipe() для создания чистых и читаемых цепочек обработки данных.

import pandas as pd

# Пример: очистка и преобразование данных в одну цепочку
def clean_data(df):
return df.dropna().reset_index(drop=True)

def add_age_group(df):
df['age_group'] = pd.cut(df['age'], bins=[0, 18, 35, 60, 100], labels=['Kid', 'Young', 'Adult', 'Senior'])
return df

# Используем pipe для последовательной обработки
df = (pd.read_csv('data.csv')
.pipe(clean_data)
.pipe(add_age_group))


Зачем это нужно:
🎌 .pipe() позволяет организовать преобразования данных в логическую цепочку, улучшая читаемость кода
🎌 Удобно для сложных ETL-процессов (Extract, Transform, Load)
🎌 Легко добавлять новые шаги обработки

Пример в деле:
def normalize_column(df, col):
df[col] = (df[col] - df[col].mean()) / df[col].std()
return df

df = (pd.DataFrame({'value': [10, 20, 30, 40]})
.pipe(normalize_column, col='value'))


Библиотека дата-сайентиста #буст

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/dsproglib/6423

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Can I mute a Telegram group?

In recent times, Telegram has gained a lot of popularity because of the controversy over WhatsApp’s new privacy policy. In January 2021, Telegram was the most downloaded app worldwide and crossed 500 million monthly active users. And with so many active users on the app, people might get messages in bulk from a group or a channel that can be a little irritating. So to get rid of the same, you can mute groups, chats, and channels on Telegram just like WhatsApp. You can mute notifications for one hour, eight hours, or two days, or you can disable notifications forever.

How to Buy Bitcoin?

Most people buy Bitcoin via exchanges, such as Coinbase. Exchanges allow you to buy, sell and hold cryptocurrency, and setting up an account is similar to opening a brokerage account—you’ll need to verify your identity and provide some kind of funding source, such as a bank account or debit card. Major exchanges include Coinbase, Kraken, and Gemini. You can also buy Bitcoin at a broker like Robinhood. Regardless of where you buy your Bitcoin, you’ll need a digital wallet in which to store it. This might be what’s called a hot wallet or a cold wallet. A hot wallet (also called an online wallet) is stored by an exchange or a provider in the cloud. Providers of online wallets include Exodus, Electrum and Mycelium. A cold wallet (or mobile wallet) is an offline device used to store Bitcoin and is not connected to the Internet. Some mobile wallet options include Trezor and Ledger.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from br


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA